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Abstract

Modeling the Control of Ribonucleotide Reductase

Joakim Widén

Ribonucleotide Reductase (RNR) is an enzyme that catalyzes the conversion of
ribonucleotide diphosphates (NDPs) into deoxyribonucleotide triphosphates
(dNTPs). The enzyme is essential for maintaining proper pool sizes of dNTPs which in
turn is important for keeping mutation to a minimum.

The enzyme is allosterically regulated, which means that the products bind to it as
effectors, altering the enzymes acceptibility of substrates, thus regulating their own
production.

The enzyme system was simulated in Matlab with parameters determined in vitro and
the behavior of the system was compared to previously published experiments.
Although actual agreement between concentrations and parameters was difficult to
establish, general agreement of the system's behavior with experimental results was
noted.
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SWEDISH ABSTRACT 
 
SAMMANFATTNING PÅ SVENSKA 
 
Ribonukleotidreduktas (eng. ribonucleotide reductase, förk. RNR) är ett enzym som reglerar 
tillförseln av deoxyribonukleotider (dNTP:er) till replikation och reparation av DNA i cellerna 
hos i stort sett alla organismer. Deoxyribonukleotiderna, som är byggstenar till DNA, finns i 
fyra olika former: dATP, dGTP, dCTP och dTTP. Det som skiljer dessa molekyler åt är vilka 
baser (adenin, guanin, cytosin och tymin) som de är uppbyggda kring.  
 
Detta exjobb syftar till att kontrollera om den modell som föreslagits för regleringen av RNR 
fungerar vid simulering av enzymsystemet, dvs. om enzymet reglerar förekomsten av 
dNTP:er och dessutom är kapabelt till att hålla dNTP:erna på nivåer som observerats i 
levande celler. 
 
En matematisk differentialekvationsmodell för regleringen av enzymet i en växande cell 
formulerades utifrån matematisk enzymkinetik och denna modell simulerades i Matlab. 
Resultaten från simuleringen jämfördes sedan med experimentella resultat från tidigare 
studier. Dessa jämförelser visade att RNR reglerar dNTP-koncentrationerna i cellen på ett 
rimligt sätt, även om jämförelser mellan exakta värden på parametrar och koncentrationer 
visade sig svåra att göra. 
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1 INTRODUCTION

The DNA of all living organisms is constructed from four different deoxyri-
bonucleotide phosphates (dNTPs), dATP, dGTP, dCTP and dTTP. In order
to replicate and repair its DNA, the cell needs a steady supply of all of these
dNTPs. Moreover, this supply has to be balanced for replication and repair
to work properly. There are intrinsic metabolic pathways leading to the pro-
duction of the dNTPs in the cell. Feedback and different types of regulation
occur at different levels in these pathways, helping to maintain a balanced
supply. This balance is very important for the cell to maintain, since pertur-
bations in dNTP pools are associated with increased mutation frequencies
and subsequent defects and diseases [1]. The focus of this thesis is on one
such point of control.

1.1 Aim of the Project

The aim of this Master’s thesis project has been to determine how a specific
enzyme, ribonucleotide reductase (RNR), regulates the dNTP concentrations
within this larger framework of pathways. There are many different classes
of ribonucleotide reductases, depending on the organism of interest and on
whether the reduction is aerobic or anaerobic. The focus of this study is
the Escherichia coli aerobic enzyme, mainly because this is the most studied
enzyme and therefore easiest to obtain data on.

1.2 Methods and Data

The model was simulated using differential equations describing the enzyme
kinetics of RNR using Matlab, with a basic model structure already presented
in a number of articles and reaction data from different in vitro experiments,
all of which will be described later. The logic of the method has been to
simulate the enzyme system using the known information and to compare the
simulation results with the known in vivo/in vitro behavior of the system.
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1.3 Structure of the Report

Chapter 2 will introduce reduction of ribonucleotides and the role of RNR
in that process. Chapter 3 describes the model of the RNR enzyme action.
Chapter 4 describes how the model parameters were obtained and applied
to the model structure. Chapter 5, finally, presents the results of some runs
with the simulated system and comparisons with the known behavior of the
enzyme system.

2 RNR AND REDUCTION OF RIBONUCLEOTIDES

2.1 Reaction Overview

Reichard [1] presents an overview of the pathway of synthesis of dNTPs,
which is the general path of synthesis in all organisms. This is shown in figure
1. Small molecules form ribonucleotides which are reduced to deoxyribonu-
cleotides by the ribonucleotide reductase enzyme. The dNDPs (deoxyribonu-
cleotide diphosphates) are formed directly by the RNR and in a subsequent
phosphorylation reaction dNTPs are formed, which are then ready for use in
DNA replication or repair.

Figure 1: Overview of DNA synthesis. From [1].

A more detailed scheme, showing more reactions, is depicted in figure 2.
This is also a simplification compared to the total scheme of reactions. As
described in [1], the number of enzymes involved in the reduction of NDPs
is much larger. In mammals, the number of relevant enzymes, according to
Reichard, is seven. However, it can be argued that only the RNR enzyme
and the dCTP aminase (see figure 2) are interesting when we are modeling
the regulation of the dNTP concentrations, since these two enzymes are the
only ones that are subject to control.

3



Figure 2: Pathway of deoxyribonucleotide synthesis. Reactions marked with
(1) are catalyzed by ribonucleotide reductase and the reaction marked with
(2) is catalyzed by dCTP deaminase. The total enzyme activity is considered
to be controlled by the allosteric mechanism of RNR.

2.2 Allosteric Control

The control of the RNR and the deaminase is allosteric, meaning that the
products of the enzymes bind back to them and alter the three-dimensional
conformation of the protein so that the substrate specificity is changed. This
means that when a product has been formed, it can bind back and change
the enzyme structure, so as to negatively control its own production.

RNR of E. coli is controlled allosterically according to table 1. It has two
so-called allosteric sites to which the effectors (dNTPs and ATP in this case)
bind. The activity site regulates the overall activity of the enzyme, with ATP
stimulating and dATP inhibiting the catalytic activity. The specificity site
controls which NDPs are reduced by the enzyme. With ATP, dATP, dTTP
or dGTP bound to this site, different substrates are accepted by the enzyme,
as can be seen in table 1. Note that three out of four of the products of the
enzyme bind to it as effectors, thereby regulating their own production from
NDPs.

This model for the allosteric regulation has been verified experimentally in
[2], [3] and [4], and described in a number of articles too large to present
here. A recent review discussing the regulation of the enzyme can be found
in [5].
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Activity site Specificity site Reduction of

ATP ATP, dATP CDP, UDP
ATP dTTP GDP
ATP dGTP ADP
dATP Any effector Inhibition

Table 1: Allosteric regulation of ribonucleotide reductase. From [5].

dCTP aminase is also allosterically controlled, but in a much simpler way.
dCTP (the product) binds in as positive effector, activating the enzyme and
dTTP binds to it as negative effector, inhibiting the enzyme function [1].

3 DESCRIPTION OF THE RNR MODEL

In this section, a description of the model for the RNR enzyme function
that is presented. It should be noted that this modeling and the subsequent
evaluation, bug-fixing, etc. took up most of the thesis work. Therefore it
takes up relatively much space in the report as well.

3.1 Michaelis-Menten Kinetics

Based on the general Michaelis-Menten formula for enzyme kinetics (see for
example [8]), expressions can be derived for the production rates of dNTPs
over the enzyme. Assuming Michaelis-Menten kinetics for the enzyme, the
following are the inflows into the dNTP pools for the ADP- and GDP-
reducing enzyme forms.

jdATP =
[RNRADP ][ADP ]kcat,ADP

[ADP ] + Km,ADP
(1)

jdGTP =
[RNRGDP ][GDP ]kcat,GDP

[GDP ] + Km,GDP
(2)

[dNTP ], [NDP ] and [RNRNDP ] for N = A, G denote effector, substrate and
enzyme concentrations, respectively. The kcat constants are the maximum
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velocities of the enzyme reactions and the Km constants are the substrate
concentrations at which the enzyme reaction reaches half of its maximum
velocity. The case for the CDP- and UDP-reducing forms of the enzyme
is a bit more complicated, since the same form of enzyme reduces either of
these substrates, so that the substrates compete for the binding sites on the
enzyme. Denoting the flow over each type of substrate reduction reaction j
and i, the kcat and Km values for the two reactions kcat,i, kcat,j, Km,i and Km,j,
the substrates and enzyme concentrations s1, s2 and e, respectively, and the
enzyme-substrate complexes es1 and es2, the following relations hold:

e =
j

kcat,j

Km,j

s1

, es1 =
j

kcat,j

(3)

e =
i

kcat,i

Km,i

s2

, es2 =
i

kcat,i

(4)

e0 = e + es1 + es2 (5)

From these relations, the following formulas for the flows can be derived:

j =
e0s1kcat,j

Km,j + s1 +
Km,js2

Km,i

, i =
e0s2kcat,i

Km,i + s2 +
Km,is1

Km,j

(6)

In terms of RNR and NDP concentrations, the reduction rates of CDP and
UDP become:

jdCTP =
[RNRCDP,UDP ][CDP ]kcat,CDP

[CDP ] + Km,CDP

(
1 + [UDP ]

Km,UDP

) (7)

jdTTP =
[RNRCDP,UDP ][UDP ]kcat,UDP

[UDP ] + Km,UDP

(
1 + [CDP ]

Km,CDP

) (8)

As can be seen, apart from the regulation of RNR, it is the ratios kcat/Km and
[CDP ]/[UDP ] that determines which substrate is reduced. In the context
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of a growing cell, there will also be a dilution effect due to growth, which
is taken into account by subtraction of a dilution term µ[dNTP ] from each
equation above, where µ is the exponential growth rate (see for example [9]).

3.2 Association of Effectors to the Enzyme

When modeling the action of the allosterically regulated RNR over time, two
separate events must be taken into consideration: (1) the reduction of NDPs
by the enzyme, modeled by the Michaelis-Menten kinetics above, and (2) the
association and dissociation of dNTPs to and from the enzyme. These two
events are obviously intertwined, since production of new dNTPs will affect
the amount of free dNTPs that can bind to the enzyme, and since altered
ratios of forms of RNR, resulting from dNTP concentration changes, will
change the production rates of the different dNTPs.

It seems reasonable to use the method of separation of timescales (see [8]),
in which we assume that the two events occur on different time scales, so
that equilibrium concentrations of effector-enzyme complexes, free dNTPs
and free enzymes stabilize instantly in relation to the production flows over
the enzyme. That is, as soon as new dNTPs are produced by the enzyme,
they immediately reach equilibrium with the enzyme.

Thus, the problem of calculating effector concentrations at a given time point
reduces to solving a system of equilibrium concentrations. With Kd,X,Y being
the dissociation constant for effector site X and effector Y , and [SPECY ]
and [ACTY ] denoting the concentrations of the specificity site and activity
site for an effector Y (subscript free indicating that no effector is bound)
the following six equations describe binding of effectors to the RNR. (The
dissociation constants describe the dissociation of enzyme-effector complexes.
The greater the value of the dissociation constant, the larger the ratio of free
effector and enzyme. See [8] for further discussion.)

[ACTfree][dATP ]

[ACTdATP ]
= Kd,ACT,dATP (9)

[ACTfree][ATP ]

[ACTATP ]
= Kd,ACT,ATP (10)
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[SPECfree][dATP ]

[SPECdATP ]
= Kd,SPEC,dATP (11)

[SPECfree][ATP ]

[SPECATP ]
= Kd,SPEC,ATP (12)

[SPECfree][dGTP ]

[SPECdGTP ]
= Kd,SPEC,dGTP (13)

[SPECfree][dTTP ]

[SPECdTTP ]
= Kd,SPEC,dTTP (14)

In addition to these, the law of mass conservation (which states that the total
amounts of enzyme and effectors, i.e. in both bound and unbound states,
are preserved and thus constant) gives us the following relations:

[dATP ] + [ACTdATP ] + [SPECdATP ] = [dATP ]tot (15)

[ATP ] + [ACTATP ] + [SPECATP ] = [ATP ]tot (16)

[dGTP ] + [SPECdGTP ] = [dGTP ]tot (17)

[dTTP ] + [SPECdTTP ] = [dTTP ]tot (18)

[ACTdATP ] + [ACTATP ] = [RNR]tot (19)

[SPECdATP ]+ [SPECATP ]+ [SPECdGTP ]+ [SPECdTTP ] = [RNR]tot (20)
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To calculate the concentrations of the different forms of RNR, we use these
equilibrium concentrations, together with the information given in table 1.
Thus, the probability that RNR is in the form that reduces ADP is equal to
the probability that ATP is bound to the activity site at the same time as
dGTP is bound to the specificity site, i.e.

P (ADP reduction) = P (ATP at ACT site)P (dGTP at SPEC site) (21)

Similarly,

P (GDP reduction) = P (ATP at ACT site)P (dTTP at SPEC site) (22)

and

P (CDP and UDP reduction) = P (ATP at ACT site)[(P (ATP at SPEC site)

+ P (dATP at SPEC site)] (23)

and, since the probabilities add up to 1,

P (RNR inhibited) = 1 − P (ADP reduction) − P (GDP reduction)

− P (CDP and UDP reduction) (24)

We can express the above probabilities for effector binding as concentration
ratios on the form, for example

P (ATP at ACT site) =
[ACTATP ]

[RNR]tot
(25)

and so on. Substituting into the probability equations for RNR reduction and
multiplying each equation with [RNR]tot (see Appendix 2: Computational
Methods) gives us the following expressions for the RNR concentrations (as
above, RNRY denotes the enzyme form reducing substrate Y ):

[RNRGDP ] =
[ACTATP ][SPECdTTP ]

[RNR]tot
(26)

[RNRADP ] =
[ACTATP ][SPECdGTP ]

[RNR]tot
(27)

[RNRCDP,UDP ] =
[ACTATP ] ([SPECATP ] + [SPECdATP ])

[RNR]tot
(28)
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[RNRinhibited] = [RNR]tot− [RNRGDP ]− [RNRADP ]− [RNRCDP,UDP ] (29)

3.3 Implementation

The actual simulation proceeds according to the following steps (this is only
a basic structure; between steps 1 and 2 there also comes in for example
consumption of dNTP pools by DNA replication, depending on the purpose
of the simulation):

at each time step

1. Calculate dNTP concentrations from Michaelis-Menten equations

(1)-(2), (7)-(8).

2. Solve the equation system (9)-(20) to obtain effector (dNTP)

and effector-site concentrations.

3. Calculate new RNR concentrations according to equations (26)-(29).

The M.M.-reactions are simulated using a simple Euler method, and for cal-
culating the equilibrium concentrations in the partially non-linear equation
system (9)-(20), Newton’s method for multidimensional systems is employed.
The exact code is attached in Appendix 1.

3.4 External Control

The conversion of dCTPs to dTTPs was modeled similarly by flowbased
enzyme kinetics. The scheme in figure 3 describes the reactions over the
deaminase enzyme. From this scheme the following expression for the flow
can be derived (see Appendix 2: Computational Methods):

j = ECkT =
E0kT C/KC

1 + C/KC + T/KT
(30)
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Figure 3: dCTP demainase reaction scheme. C = [dCTP ] and T = [dTTP ]
and E is the free concentration of the enzyme. KC and KT are equilibrium
constants for binding of dCTP and and dTTP to the enzyme and kT is the
rate constant for dCTP conversion by the enzyme.

3.5 Model of Replication

The outflow to replication was modeled as follows. With Km,pol,dATP being
the Km values for the polymerase reaction with dATP, and fdATP the fraction
of dATPs among the total amount of dNTPs being incorporated into the
DNA, and so on for the other dNTPs, the following expression describes the
flow to replication [10]:

jrepl,dnTP =
fdnTP D

1
krepl

∑
i=A,C,G,U(fdiTP (1 +

Km,pol,diTP

[diTP ]
))

, (31)

n = A, C, G, U

This formula is derived in appendix 2. Here, krepl is the maximum rate
constant for replication, set to 1000 s−1, and D is the number of replication
forks, set to 0.1 µM .

4 DETERMINATION OF PARAMETERS

Thus far we have only dealt with theoretical modeling of the enzyme reactions
and binding equilibriums. This section briefly describes how the reaction and
binding constants were chosen, based on the available literature and scientific
articles.
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4.1 Effector Dissociation Constants

Ormö and Sjöberg calculated dissociation constants for the various effectors
already presented in table 1 [6]. They used measured binding at 25 degrees
C. Their values for the binding constants were used, since it was (as far as
was possible to determine) the most recent article on the subject. One thing
should be noted; in table 1 it is evident that both ATP and dATP can bind
to both allosteric sites. However, Ormö and Sjöberg only measured separate
binding for dATP but not for ATP. The binding of ATP to the enzyme as
a whole was 80 µM , according to their measurements, and this was used as
binding constant to both sites.

The values of the constants are shown in table 2.

Constant Value (µM)

Kd,ACT,dATP 6
Kd,SPEC,dATP 0.86
Kd,ACT,ATP 80
Kd,SPEC,ATP 80

Kd,dTTP 1.9
Kd,dGTP 0.77

Table 2: Effector dissociation constants from [6].

4.2 Enzyme Reaction Constants

Larsson and Reichard ([2], [3], [4]) measured Km values for RNR with differ-
ent effectors bound to it. From some of their other measurements it is also
possible to calculate the corresponding kcat values. It should be noted here
also, that the information on experiment conditions given in these articles
is far from clear-cut, so a significant amount of deciphering had to be done
before the given data could even be used.

It will only be briefly described how the kcat values that were used in the
model were calculated. Vmax (the maximum enzyme reaction rate) is given
for each enzyme reaction. Since e0kcat = Vmax (see [8]) we can calculate kcat

if we know the total amount of enzyme (e0) in each experiment. The problem
here is that the RNR enzyme consists of two subgroups which were given in
unequal amounts in the different experiments, in some cases the difference
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being as much as two times. The assumption has been that the subgroup
with the lowest concentration was limiting, so that we can set it equal to the
e0 concentration. How accurate this assumption is can only be determined if
we study the association of the subgroups to each other at different mutual
concentrations. This, however, was rightly considered to be outside the scope
of this thesis.

The Km and kcat values that finally came to be used are given in table 3.

Constant Value

Km,CDP 180 µM
Km,UDP 220 µM
Km,GDP 25 µM
Km,ADP 30 µM
kcat,CDP 0.3 s−1

kcat,UDP 0.25 s−1

kcat,GDP 0.17 s−1

kcat,ADP 0.17 s−1

Table 3: Km and kcat values from [2], [3] and [4].

4.3 Verification of the Model Parameters

Now that we have a model describing the RNR enzyme system, calibrated
with parameters from actual in vitro experiments, we should be able to easily
verify this model construction by comparing it with the actual experiments
of the aforementioned articles. This is possible, but not to a large extent,
because sadly enough the experiments are so poorly presented in the arti-
cles that a direct comparison of results in most cases is virtually impossible.
Also, in some cases the model does not manage to handle the extreme con-
centrations of the experiments. Possibly, this is because the experiments
were performed in vitro while the model is supposed to describe the in vivo
behavior. Also the fact that we are using a relatively simple Euler method
could also cause this.

The experiments shown in figures 4 to 7 are instructive. The agreement is not
perfect, but at least the behavior of the model resembles the experimental
behavior of the in vitro system, which is a good sign. For example, the
dATP and dCTP curves are similar. Note that in figure 4 the linearity of the

13



Figure 4: Effects of different dNTPs on CDP reduction. Simulations were
performed with the following parameter values (µM): ATP 1.5, CDP 500,
RNR 0.53. dNTP concentrations were increased successively and the dCTP
produced by the enzyme system was stored and plotted. This is to be com-
pared to the next figure.

dCTP curve almost exclusively is due to the added dCTP, and the curve of
produced dCTP is virtually constant, as in figure 5. The dTTP and dGTP
curves are not similar, however, increasing and constant as they are in figure
5, while decreasing in figure 4.

Given the model structure, the result in figure 4 is obviously the expected
one, with dATP initially stimulating the reduction heavily and in greater
concentrations inhibiting it by binding to the activity site of the RNR, and
the other dNTPs inhibiting the enzyme action. Figure 5, which shows the ex-
perimental result used to deduce the model thus seems to contradict it (apart
from the agreement between the dATP curves) most clearly with dTTP stim-
ulating CDP reduction, whereas it should in fact inhibit it according to the
model (see table 1).
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Figure 5: Effects of different dNTPs on CDP reduction. From [2]. dNTPs
were successively added to a solution containing enzyme, NDPs and ATPs
in quantities as in the previous figure. The dCDP produced by the enzyme
was measured. This is to be compared to the previous figure.

The agreement is better in figures 6 and 7, although the actual values are
difficult to compare. The important thing to note here is that the slope of the
curves increases approximately equally with decreasing CDP concentrations
in both figures.

The steady-state concentrations of the dNTPs were studied when simulating
the system with the parameters given above. These concentrations are shown
in figure 8. Other parameters, if not described above, can be found in table
5. When not otherwise stated, those values are used in this and subsequent
figures. Conversion of dCTP to dTTP via the dCTP deaminase was not used
here.

Figure 8 shows that the concentrations are differing quite heavily from each
other, with differences amounting to several orders of magnitude. This be-
havior, with dATP, dGTP, dTTP and dCTP in increasing order, is preserved,
more or less, when the above parameters are changed, even when the changes
are huge. This suggests that the system is quite robust against changes in
the model reaction and equilibrium parameters, but also that we do not seem
to be able to ”tune” the dNTP pools, so as to make them assume any value.
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Figure 6: Effects of ATP on CDP reduction. Simulations were performed
with the following parameter values (µM): RNR 0.53 and CDP 50 (curve a)
and 500 (curve b). This is to be compared to the next figure.

This will be further discussed below.

5 RESULTS AND COMPARISONS

This chapter summarizes the conclusions that can be drawn about how the
model works when tested against what is expected. In the example runs
with the model (figures 8 to 12) the inflow of substrates (NDPs) were held
constant and the outflow was modeled as in section 3.5. The figures show that
dNTP concentrations all reach steady state values due to regulation (figure
8) and that effectors bind in to the allosteric sites in differing concentrations
and reach steady state to maintain the control of the pools (figures 9 and
10). Figure 11 shows the concentrations of the RNR forms with different
substrate specificity resulting from the binding of effectors to the allosteric
sites. Note that the enzyme is active although the dATP concentration is
relatively high (cfr. figure 8). This is because the intracellular concentration
of ATP is set to the high in vivo value (3 mM , see [11]). Figure 12, finally,
shows the resulting outflow of dNTPs to replication maintained by the RNR.
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Figure 7: Effects of ATP on CDP reduction. From [2], with the same exper-
imental conditions as in figure 5. The curve marked with + was measured
with a CDP concentration of 50 µM and the one marked with × with a CDP
concentration of 500 µM . This is to be compared to the previous figure.

One result that seems to be well in agreement with the experimental re-
sults is that dCTP is the largest pool as compared to the others, when the
external deaminase control is not taken into account. When dilution is not
modeled (so that not all concentrations reach steady state values), the dCTP
concentration increases infinitely.

As Reichard concludes in [1], only dCTP does not bind to any allosteric site,
and thus it cannot regulate its own production. Instead, he writes, dCTP
acts allosterically on the deaminase and it has been shown in experiments
that cells lacking this pathway have an increased dCTP pool and a decreased
dTTP pool. As shown with the model this is precisely what happens when
simulating the system. This is most clearly so in the simulation without
growth. However, without the external control through the deaminase path-
way, the dTTP pool is not depleted, and as already has been concluded it is
apparent that altering the ratio between dTTP and dCTP does not introduce
any notable change in the other dNTP pools.

As a guideline, simulation outputs were compared with a set of dNTP pool
concentrations that seem rather reasonable. They are taken from [7] and
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Figure 8: Steady state concentrations of dNTPs. Simulation with parameters
shown in table 5.

are shown in table 4. We can see that with the parameter value choices
of the simulation described above, the dNTP pools end up at much lower
concentrations than the ones in table 4 (cfr. figure 8). They differ at least at
three orders of magnitude, which is too much. Heavily increasing the amount
of RNR (standard is 1 µM) changes this to some degree, but it is not enough,
and such an increase in the enzyme concentration is simply not reasonable.

dNTP pool Concentration (µM)

dATP 180
dCTP 120
dGTP 70
dTTP 80

Table 4: dNTP pools from [7].

But perhaps we should not be surprised. Experimentally measured concen-
trations of the dNTP pools differ heavily according to Reichard: ”It is not
possible to define a ’proper’ size for a given dNTP pool. Reports from differ-
ent laboratories vary considerably, apparently also for one and the same cell
line.” [1] And right there is one important problem of verifying the model:
neither the parameters nor the data against which to verify the model are
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Figure 9: Effectors bound to the specificity site of the RNR enzyme. Total
RNR concentration is 1 M. Simulation with parameters shown in table 5.

confident. This is also because in vitro parameters are used for modeling
in vivo behavior. Thus, we cannot really say if the parameter values (or
the structure of the allosteric control) is correct, since we have no confident
data to compare it with, and therefore we cannot answer the more important
question of whether the RNR system is sufficient to explain the dNTP pool
regulation. New in vivo experiments would certainly improve the chances of
verifying the model.

Nevertheless, it is interesting to look at the robustness of the model. How
does it respond to changes in inflow and outflow?

Figure 13 shows the results. The inflow of NDPs was heavily decreased
for each NDP successively (by four orders of magnitude). As a result, the
outflows were reduced by at least 6 orders of magnitude as compared to the
previous figures. This indicates that the system is not robust towards changes
in substrate pools. Changes in outflow to replication were also tested, but
the model was not able to handle these.

To summarize, this has given insight to how the RNR enzyme works. Agree-
ment with experimental results has been seen, especially for the dCTP pool
size, but it has been difficult to draw any confident conclusions on the ex-
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Figure 10: Effectors bound to the activity site of the RNR enzyme. Total
RNR concentration is 1 M. Simulation with parameters shown in table 5.

act agreement between the model and experiments, since the experimental
material available for comparison leaves many questions unanswered and
unanswerable.
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Figure 12: Outflow of dNTPs to replication. This is the flow described by
equation 31. Simulation with parameters shown in table 5.
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Parameter Value

Km,CDP 180 µM
Km,UDP 220 µM
Km,GDP 25 µM
Km,ADP 30 µM
kcat,CDP 0.3 s−1

kcat,UDP 0.25 s−1

kcat,GDP 0.17 s−1

kcat,ADP 0.17 s−1

Kd,dATP,ACT 6 µM
Kd,dATP,SPEC 0.43 µM
Kd,ATP,ACT 80 µM
Kd,ATP,SPEC 80 µM
Kd,dTTP,SPEC 1.9 µM
Kd,dGTP,SPEC 0.77 µM
Km,pol,dATP 4 µM
Km,pol,dCTP 5 µM
Km,pol,dGTP 4 µM
Km,pol,dTTP 2 µM

krepl 1000 s−1

D 2
[RNR]tot 1 µM

kT 10 s−1

KC 1 µM
KT 1 µM

ATP 3 mM

Table 5: Parameter values used in the model.
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APPENDIX 1: MATLAB Code

% UNITS

% Concentration: micromolar

% Time: seconds

clear all

close all

% SIMULATION PARAMETERS

RUNS_outer = 100;

RUNS_inner = 400;

DT = 0.05;

time_steps = RUNS_outer*RUNS_inner;

% Initiate vectors

dATPs = zeros(1, RUNS_outer+1);

ATPs = zeros(1, RUNS_outer+1);

dCTPs = zeros(1, RUNS_outer+1);

dGTPs = zeros(1, RUNS_outer+1);

dTTPs = zeros(1, RUNS_outer+1);

act_dATPs = zeros(1, RUNS_outer+1);

act_ATPs = zeros(1, RUNS_outer+1);

spec_dATPs = zeros(1, RUNS_outer+1);

spec_ATPs = zeros(1, RUNS_outer+1);

spec_dGTPs = zeros(1, RUNS_outer+1);

spec_dTTPs = zeros(1, RUNS_outer+1);

spec_frees = zeros(1, RUNS_outer+1);

act_frees = zeros(1, RUNS_outer+1);

ADPs = zeros(1, RUNS_outer+1);

GDPs = zeros(1, RUNS_outer+1);

CDPs = zeros(1, RUNS_outer+1);

UDPs = zeros(1, RUNS_outer+1);

RNR_GDPs = zeros(1, RUNS_outer+1);

RNR_ADPs = zeros(1, RUNS_outer+1);

RNR_CDP_UDPs = zeros(1, RUNS_outer+1);

RNR_inhibs = zeros(1, RUNS_outer+1);

dATP_decrs = zeros(1, RUNS_outer+1);

dCTP_decrs = zeros(1, RUNS_outer+1);

dGTP_decrs = zeros(1, RUNS_outer+1);

dTTP_decrs = zeros(1, RUNS_outer+1);

dATP_incrs = zeros(1, RUNS_outer+1);

dCTP_incrs = zeros(1, RUNS_outer+1);

dGTP_incrs = zeros(1, RUNS_outer+1);

dTTP_incrs = zeros(1, RUNS_outer+1);

t = zeros(1, RUNS_outer+1);

% ENZYME REACTION CONSTANTS

Km_CDP = 180;

Km_UDP = 220;

Km_GDP = 25;
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Km_ADP = 30;

kcat_CDP = 0.3;

kcat_UDP = 0.25;

kcat_GDP = 0.17;

kcat_ADP = 0.17;

mu = 1e-4;

% EFFECTOR DISSOCIATION CONSTANTS

Kd_dATP_act = 6; % Reference: Ormö-Sjöberg 1990, p. 140

Kd_dATP_spec = 0.43;

Kd_ATP_act = 80;

Kd_ATP_spec = 80;

Kd_dTTP = 1.9;

Kd_dGTP = 0.77;

% DNA POLYMERASE CONSTANTS

pol_Km_dATP = 4;

pol_Km_dCTP = 5;

pol_Km_dGTP = 4;

pol_Km_dTTP = 2;

O = zeros(1, time_steps/4);

I = 0.25*ones(1, time_steps/4);

f_dATP = [I I I I];

f_dCTP = [I I I I];

f_dGTP = [I I I I];

f_dTTP = [I I I I];

k_repl = 1000;

D = 10^-1; % Replication site concentration

% INITIAL CONCENTRATIONS

RNR_tot = 1;

% Effector-site concentrations

act_ATP = 0;

act_dATP = 0;

act_free = RNR_tot - act_ATP - act_dATP;

spec_ATP = 0;

spec_dATP = 0;

spec_dTTP = 0;

spec_dGTP = 0;

spec_free = RNR_tot - spec_ATP - spec_dATP - spec_dTTP - spec_dGTP;

% RNR concentrations, calculated from

% the effector-site concentrations

RNR_GDP = act_ATP * spec_dTTP / RNR_tot;

RNR_ADP = act_ATP * spec_dGTP / RNR_tot;

RNR_CDP_UDP = act_ATP * (spec_ATP + spec_dATP) / RNR_tot;

RNR_inhib = RNR_tot - RNR_GDP - RNR_ADP - RNR_CDP_UDP;

dATP = 0; % dNTP concentrations

dTTP = 0;

dGTP = 0;
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dCTP = 0;

ATP = 3000; % ND(T)P concentrations

CDP = 50;

UDP = 50;

GDP = 50;

ADP = 0.001;

dATP_tot = dATP + act_dATP + spec_dATP;

ATP_tot = ATP + act_ATP + spec_ATP;

dGTP_tot = dGTP + spec_dGTP;

dTTP_tot = dTTP + spec_dTTP;

% Adjust effector and effector-site equilibrium concentrations

current_conc = [dATP, ATP, dGTP, dTTP, act_dATP, act_ATP, spec_dATP, spec_ATP, spec_dGTP, spec_dTTP, act_free, spec_free]

K = [Kd_dATP_act, Kd_dATP_spec, Kd_ATP_act, Kd_ATP_spec, Kd_dTTP, Kd_dGTP];

tot_conc = [dATP_tot, ATP_tot, dGTP_tot, dTTP_tot, RNR_tot];

new_conc = eq_conc_aerobic(current_conc, K, tot_conc);

dATP = new_conc(1); ATP = new_conc(2); dGTP = new_conc(3); dTTP = new_conc(4); act_dATP = new_conc(5);

act_ATP = new_conc(6); spec_dATP = new_conc(7); spec_ATP = new_conc(8); spec_dGTP = new_conc(9);

spec_dTTP = new_conc(10); act_free = new_conc(11); spec_free = new_conc(12);

% Store conc. values

dATPs(1) = dATP; ATPs(1) = ATP; dCTPs(1) = dCTP; dGTPs(1) = dGTP; dTTPs(1) = dTTP; act_ATPs(1) = act_ATP;

spec_dATPs(1) = spec_dATP; spec_ATPs(1) = spec_ATP; spec_dGTPs(1) = spec_dGTP; spec_dTTPs(1) = spec_dTTP;

spec_frees(1) = spec_free; act_frees(1) = act_free;

ADPs(1) = ADP; GDPs(1) = GDP; CDPs(1) = CDP; UDPs(1) = UDP;

RNR_GDPs(1) = RNR_GDP; RNR_ADPs(1) = RNR_ADP; RNR_CDP_UDPs(1) = RNR_CDP_UDP; RNR_inhibs(1) = RNR_inhib;

t(1) = 0;

% SIMULATION

for j = 2:RUNS_outer+1

j

for i = 1:RUNS_inner

ind = (j-2)*RUNS_inner + i;

% Increase in dNTP concentrations from Michaelis-Menten reactions

dATP_incr = ( RNR_ADP * ADP * kcat_ADP / (ADP + Km_ADP) ) * DT;

dGTP_incr = ( RNR_GDP * GDP * kcat_GDP / (GDP + Km_GDP) ) * DT;

dCTP_incr = ( RNR_CDP_UDP * CDP * kcat_CDP / (CDP + Km_CDP * (1 + UDP/Km_UDP)) ) * DT;

dTTP_incr = ( RNR_CDP_UDP * UDP * kcat_UDP / (UDP + Km_UDP * (1 + CDP/Km_CDP)) ) * DT;

% Decrease in dNTP concentrations from replication

v = 1/( 1/k_repl*(f_dATP(ind)*(1 + pol_Km_dATP/dATP) + f_dGTP(ind)*(1 + pol_Km_dGTP/dGTP) + f_dCTP(ind)*(1 + pol_

dATP_decr = f_dATP(ind)*D*v * DT;

dGTP_decr = f_dGTP(ind)*D*v * DT;

dCTP_decr = f_dCTP(ind)*D*v * DT;

dTTP_decr = f_dTTP(ind)*D*v * DT;

% Adjust concentrations

dATP = dATP + dATP_incr - dATP_decr - mu*dATP*DT;

dGTP = dGTP + dGTP_incr - dGTP_decr - mu*dGTP*DT;
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dCTP = dCTP + dCTP_incr - dCTP_decr - mu*dCTP*DT;

dTTP = dTTP + dTTP_incr - dTTP_decr - mu*dTTP*DT;

% Flow from dCTP to dTTP

kT = 10;

KC = 1;

KT = 1;

E0 = 0;

dTTP_change = E0*kT*dCTP/KC/(1 + dCTP/KC + dTTP/KT)*DT;

dCTP = dCTP - dTTP_change;

dTTP = dTTP + dTTP_change;

dATP_tot = dATP + act_dATP + spec_dATP;

ATP_tot = ATP + act_ATP + spec_ATP;

dGTP_tot = dGTP + spec_dGTP;

dTTP_tot = dTTP + spec_dTTP;

% Adjust effector and effector-site equilibrium concentrations

current_conc = [dATP, ATP, dGTP, dTTP, act_dATP, act_ATP, spec_dATP, spec_ATP, spec_dGTP, spec_dTTP, act_free, sp

K = [Kd_dATP_act, Kd_dATP_spec, Kd_ATP_act, Kd_ATP_spec, Kd_dTTP, Kd_dGTP];

tot_conc = [dATP_tot, ATP_tot, dGTP_tot, dTTP_tot, RNR_tot];

new_conc = eq_conc_aerobic(current_conc, K, tot_conc);

dATP_change = new_conc(1) - dATP;

dGTP_change = new_conc(3) - dGTP;

dTTP_change = new_conc(4) - dTTP;

dATP = new_conc(1); ATP = new_conc(2); dGTP = new_conc(3); dTTP = new_conc(4); act_dATP = new_conc(5);

act_ATP = new_conc(6); spec_dATP = new_conc(7); spec_ATP = new_conc(8); spec_dGTP = new_conc(9);

spec_dTTP = new_conc(10); act_free = new_conc(11); spec_free = new_conc(12);

% RNR concentrations, calculated from

% the effector-site concentrations

RNR_GDP = act_ATP * spec_dTTP / RNR_tot;

RNR_ADP = act_ATP * spec_dGTP / RNR_tot;

RNR_CDP_UDP = act_ATP * (spec_ATP + spec_dATP) / RNR_tot;

RNR_inhib = RNR_tot - RNR_GDP - RNR_ADP - RNR_CDP_UDP;

end

% Store conc. values

dATPs(j) = dATP;

ATPs(j) = ATP;

dCTPs(j) = dCTP;

dGTPs(j) = dGTP;

dTTPs(j) = dTTP;

act_dATPs(j) = act_dATP;

act_ATPs(j) = act_ATP;

spec_dATPs(j) = spec_dATP;

spec_ATPs(j) = spec_ATP;

spec_dGTPs(j) = spec_dGTP;

spec_dTTPs(j) = spec_dTTP;

spec_frees(j) = spec_free;

act_frees(j) = act_free;

ADPs(j) = ADP;

GDPs(j) = GDP;

CDPs(j) = CDP;
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UDPs(j) = UDP;

RNR_GDPs(j) = RNR_GDP;

RNR_ADPs(j) = RNR_ADP;

RNR_CDP_UDPs(j) = RNR_CDP_UDP;

RNR_inhibs(j) = RNR_inhib;

dATP_decrs(j) = dATP_decr;

dCTP_decrs(j) = dCTP_decr;

dGTP_decrs(j) = dGTP_decr;

dTTP_decrs(j) = dTTP_decr;

dATP_incrs(j) = dATP_incr;

dCTP_incrs(j) = dCTP_incr;

dGTP_incrs(j) = dGTP_incr;

dTTP_incrs(j) = dTTP_incr;

dATP_tots(j) = dATP_tot;

ATP_tots(j) = ATP_tot;

dGTP_tots(j) = dGTP_tot;

dTTP_tots(j) = dTTP_tot;

dATP_changes(j) = dATP_change;

dGTP_changes(j) = dGTP_change;

dTTP_changes(j) = dTTP_change;

t(j) = DT*(j-1)*RUNS_inner;

end

figure

semilogy(t,dATPs/10^6, t,dCTPs/10^6,t,dGTPs/10^6,t,dTTPs/10^6)

legend(’dATP’,’dCTP’,’dGTP’,’dTTP’)

xlabel(’time (seconds)’)

ylabel(’concentration (molar)’)

title(’dNTP pools’)

figure

subplot(2,2,1)

semilogy(t,dATPs/10^6,’LineWidth’,2)

xlabel(’time (seconds)’)

ylabel(’concentration (molar)’)

title(’dATP’)

subplot(2,2,2)

semilogy(t,dCTPs/10^6,’LineWidth’,2)

xlabel(’time (seconds)’)

ylabel(’concentration (molar)’)

title(’dCTP’)

subplot(2,2,3)

semilogy(t,dGTPs/10^6,’LineWidth’,2)

xlabel(’time (seconds)’)

ylabel(’concentration (molar)’)

title(’dGTP’)

subplot(2,2,4)

semilogy(t,dTTPs/10^6,’LineWidth’,2)

xlabel(’time (seconds)’)

ylabel(’concentration (molar)’)

title(’dTTP’)

figure

subplot(2,2,1)

semilogy(t,ADPs/10^6,’LineWidth’,2)
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xlabel(’time (seconds)’)

ylabel(’concentration (molar)’)

title(’ADP’)

subplot(2,2,2)

semilogy(t,CDPs/10^6,’LineWidth’,2)

xlabel(’time (seconds)’)

ylabel(’concentration (molar)’)

title(’CDP’)

subplot(2,2,3)

semilogy(t,GDPs/10^6,’LineWidth’,2)

xlabel(’time (seconds)’)

ylabel(’concentration (molar)’)

title(’GDP’)

subplot(2,2,4)

semilogy(t,UDPs/10^6,’LineWidth’,2)

xlabel(’time (seconds)’)

ylabel(’concentration (molar)’)

title(’UDP’)

figure

semilogy(t,ATPs/10^6)

legend(’ATP’)

xlabel(’time (seconds)’)

ylabel(’concentration (molar)’)

title(’ATP concentration’)

figure

semilogy(t,spec_frees/10^6,’-’,t,spec_ATPs/10^6,’:’,t,spec_dATPs/10^6,’-.’,t,spec_dGTPs/10^6,’--’,t,spec_dTTPs/10^6)

legend(’free’,’ATP bound’,’dATP bound’,’dGTP bound’,’dTTP bound’)

xlabel(’time (seconds)’)

ylabel(’concentration (molar)’)

title(’Specificity site’)

figure

semilogy(t,act_frees/10^6,’-’,t,act_ATPs/10^6,’--’,t,act_dATPs/10^6,’-.’)

legend(’free’,’ATP bound’,’dATP bound’)

xlabel(’time (seconds)’)

ylabel(’concentration (molar)’)

title(’Activity site’)

figure

subplot(2,2,1)

semilogy(t,RNR_GDPs/10^6,’LineWidth’,2)

xlabel(’time (seconds)’)

ylabel(’concentration (molar)’)

title(’GDP-reducing RNR’)

subplot(2,2,2)

semilogy(t,RNR_ADPs/10^6,’LineWidth’,2)

xlabel(’time (seconds)’)

ylabel(’concentration (molar)’)

title(’ADP-reducing RNR’)

subplot(2,2,3)

semilogy(t,RNR_CDP_UDPs/10^6,’LineWidth’,2)

xlabel(’time (seconds)’)

ylabel(’concentration (molar)’)

title(’CDP- and UDP-reducing RNR’)

subplot(2,2,4)

semilogy(t,RNR_inhibs/10^6,’LineWidth’,2)

xlabel(’time (seconds)’)

ylabel(’concentration (molar)’)

title(’Inhibited’)
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figure

subplot(2,2,1)

semilogy(t,dATP_decrs/DT/10^6,’LineWidth’,2)

xlabel(’time (seconds)’)

ylabel(’outflow velocity (molar/s)’)

title(’dATP outflow’)

subplot(2,2,2)

semilogy(t,dCTP_decrs/DT/10^6,’LineWidth’,2)

xlabel(’time (seconds)’)

ylabel(’outflow velocity (molar/s)’)

title(’dCTP outflow’)

subplot(2,2,3)

semilogy(t,dGTP_decrs/DT/10^6,’LineWidth’,2)

xlabel(’time (seconds)’)

ylabel(’outflow velocity (molar/s)’)

title(’dGTP outflow’)

subplot(2,2,4)

semilogy(t,dTTP_decrs/DT/10^6,’LineWidth’,2)

xlabel(’time (seconds)’)

ylabel(’outflow velocity (molar/s)’)

title(’dTTP outflow’)

figure

subplot(2,2,1)

semilogy(t,dATP_incrs/DT/10^6,’LineWidth’,2)

xlabel(’time (seconds)’)

ylabel(’inflow velocity (molar/s)’)

title(’dATP outflow’)

subplot(2,2,2)

semilogy(t,dCTP_incrs/DT/10^6,’LineWidth’,2)

xlabel(’time (seconds)’)

ylabel(’inflow velocity (molar/s)’)

title(’dCTP outflow’)

subplot(2,2,3)

semilogy(t,dGTP_incrs/DT/10^6,’LineWidth’,2)

xlabel(’time (seconds)’)

ylabel(’inflow velocity (molar/s)’)

title(’dGTP outflow’)

subplot(2,2,4)

semilogy(t,dTTP_incrs/DT/10^6,’LineWidth’,2)

xlabel(’time (seconds)’)

ylabel(’inflow velocity (molar/s)’)

title(’dTTP outflow’)

figure

semilogy(t,dATP_tots/10^6,’-’,t,ATP_tots/10^6,’:’,t,dGTP_tots/10^6,’-.’,t,dTTP_tots/10^6,’--’)

legend(’TOT dATP’,’TOT ATP’,’TOT dGTP’,’TOT dTTP’)

xlabel(’time (seconds)’)

ylabel(’concentration (molar)’)

title(’TOTAL CONC’)

figure

semilogy(t,dATP_tots/10^6,’-’,t,ATP_tots/10^6,’:’,t,dGTP_tots/10^6,’-.’,t,dTTP_tots/10^6,’--’)

legend(’TOT dATP’,’TOT ATP’,’TOT dGTP’,’TOT dTTP’)

xlabel(’time (seconds)’)

ylabel(’concentration (molar)’)

title(’TOTAL CONC’)

figure

semilogy(t,abs(dATP_changes)/DT/10^6,’-’,t,abs(dGTP_changes)/DT/10^6,’-.’,t,abs(dTTP_changes)/DT/10^6,’--’)

legend(’dATP’,’dGTP’,’dTTP’)

xlabel(’time (seconds)’)
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ylabel(’concentration (molar)’)

title(’CONC CHANGES’)
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APPENDIX 2: Computational Methods

Calculation of RNR Concentrations

Given probabilities for effector binding at the allosteric sites, we can calculate
RNR concentrations. Each probability can be expressed on the following
form, i.e. the fraction of enzyme with a specific effector bound, to the total
enzyme concentration:

P (ATP at ACT site) =
[ACTATP ]

[RNR]tot
(1)

The expression is the same for the other effectors. Substituting these proba-
bilities into the expressions for the probabilities of NDP reduction (equations
(21) to (24)), yields for example from equation (21):

P (ADP reduction) =
[ACTATP ][SPECdGTP ]

[RNR]2tot

(2)

Now we can multiply with [RNR]tot to get the concentration of ADP-reducing
RNR. Doing this for all probabilities yields equations (26) to (29).

External Control

From the scheme given in figure 3 and the definitions of constants given there,
we can write the flow to dTTP over the enzyme as

j = ECkT (3)

The dissociation constants are:

KC =
E · C
EC

(4)

1



KT =
E · T
ET

(5)

This means that the total enzyme concentration can be written:

E0 = E + EC + ET = E(1 + C/KC + T/KT ) (6)

which yields an expression for the concentration of free enzyme. Solving
for EC and substituting into the expression for the flow yields the following
expression:

j = ECkT =
E0kT C/KC

1 + C/KC + T/KT
(7)

Replication Model

The flow jrepl of dNTP into DNA is the product of the number of replication
forks D replicating the chromosome, the fraction fi of the dNTP i in all DNA
in the cell and the average replication speed v.

jrepl,dnTP = fdnTP Dv, n = A, C, G, T (8)

The replication speed v is the reverse of the average time τ it takes to incor-
porate any of the four bases into DNA:

1

v
= τ =

∑
n=A,C,G,T

fdnTP τdnTP (9)

Assuming Michaelis-Menten kinetics for the replication, the average time to
incorporate each base is given by

τdnTP =
1

cdnTP
=

1

krepl,dnTP

(
1 +

Kpol,dnTP

[dnTP ]

)
(10)

2



where krepl,dnTP and Kpol,dnTP are Michaelis-Menten constants for each base.
Assuming the maximal rate is the same for all bases (krepl) and inserting (10)
and (9) into (8) the outflow from each dNTP pool into replication is

jrepl,dnTP =
fdnTP D

1
krepl

∑
i=A,C,G,U(fdiTP (1 +

Km,pol,diTP

[diTP ]
))

, (11)

n = A, C, G, U
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